GREEN HYDROGEN PRODUCTION FROM RENEWABLE ENERGY SURPLUS

CERENA (PI + 6 Researchers) INESC-ID (Co-PI) IPMA (1 Researcher)

- MOTIVATION
- The Climate crisis has driven governments to set more demanding targets for renewable energy production.
- RNC2050 establishes an expansion of installed renewable energy capacity from 13 GW to 50 GW in 2050, 80 % from WT and PV.
- The intermittence of renewable energy is a real challenge to guarantee the stability of the national electricity grid.
- ► H₂ production by electrolysis of water using excess production of renewable energy is a promising solution.
- There are no studies on the Portuguese capacity for green H₂ production and its connection with the country's energy strategy.

OBJECTIVES

- Assess the potential of H₂ production from renewables surplus, using climate models.
- Modelling and optimization of Power-to-Gas systems and their integration with the national electricity production.
- Study strategies for hydrogen storage and transportation.

PITCH by Catarina Braz

RESEARCH PLAN

Electricity demand and renewable generation forecast

Development of regional load demand forecasting models based on temporal WT/PV power density maps.

Geostatistical modelling of climate variables

Development of statistical-based models of the spatiotemporal distribution of climate variables relevant to generating wind and solar power.

H Ge of sc Co sy

02

H) 05

Hydrogen storage and transport

Geotechnical characterization and cost model of underground H_2 storage (UHS) in Carriço's salt dome.

Comparison of liquid organic hydrogen carriers systems for H_2 storage.

Decision Support tool

Development of a Power Planning System software with 3D geomechanical simulations of salt caverns as UHS, interactive maps of climate variables forecasts, and temporal WT/PV power density maps up to 2050.

Assessment of hydrogen production systems

03

Modelling and optimization of electrolyser systems and their integration in Green H₂/electricity production. Optimal sizing and scheduling of Power-to-Gas systems.

EXPECTED RESULTS

01

Climate scenarios up to 2050

Temporal WT/PV power density map forecasting models

Detailed individual models of optimized electrolyser plants.

Size and scheduling of optimal Power-to-Gas systems

Identification of viable salt caverns for UHS

Identification of viable systems for transport (LOHC)

WEB-BASED POWER PLANNING SYSTEM DECISION SUPORT TOOL

