

an initiative by:

Energy Efficient Buildings E2B Association and PPP EeB

Luc BOURDEAU ECTP/E2BA Secretary General FEUP, Porto, September 18, 2014

PPPS IN HORIZON 2020

Joint Technology Initiatives

- Innovative Medicines (IMI)
- Clean Sky
- Single European Sky ATM Research (SESAR)
- Fuel Cells and Hydrogen (FCH)
- Electronic Components and Systems (ECSEL - old ARTEMIS + ENIAC)

New:

Bio-based Industries (BBI)

Contractual PPPs

- Factory of the Future (FoF)
- Energy-efficient Buildings (EeB)
- Green Vehicles (EGVI)
- Future internet (5G)

New:

- Sustainable Process Industry (SPIRE)
- Robotics
- Photonics
- High Performance Computing

Rationale of the EeB PPP

- The construction sector is the **largest EU single activity** (€1,2 trillion, 9.6% of GDP) and biggest industrial employer (14,6 million direct jobs).
- The sector is **highly fragmented** and 95% of the 3,1 million enterprises (EU-27) are SMEs. Turnover has decreased significantly during the crisis.
- Buildings account for 40 % of total energy use and 1/3 of Greenhouse Gases in Europe.
- Very low replacement rate of the **existing stock**. Energy-efficient solutions are found at present too expensive by homeowners. Novel approaches can be optimised with research at EU scale.

Contractual arrangement

• Main roles in a contractual PPP

- Private sector partners advise the Commission on R&I priorities for the Horizon 2020 work programmes
- Implementation via Commission WPs for R&I using Horizon 2020 Rules for Participation and with comitology

• Content of the document:

- Scope and Specific Objectives,
- Activities, investment and outputs,
- Governance and openness,
- Specific commitments of each side,
- Monitoring and Key Performance Indicators,
- Duration and review
- The Multi-annual roadmap is an Annex

The contractual PPP approach

• What is the same as in normal Horizon 2020:

- The financial rules are those of Horizon 2020
- Final responsibility for the Work Programme stays with the European Commission and is subject to Comitology
- Implementation remains with the Commission: selection of proposals, negotiation, review of progress and payments

• What is different from normal Horizon 2020:

- Long-term commitment by Commission to support the field
- Long-term commitment by industry to invest, with a need to demonstrate its fulfilment (monitoring & KPIs)
- Roadmap-based strategy. Close interaction in the Partnership Board to prepare the content of the calls.

Indicative EC funding

H2020	NMP	ІСТ	Transport	Energy	Environment	TOTAL
funding	RTD	CNECT	RTD + CNECT	RTD + ENER	RTD	M€
FoF	700	450	-	-	-	1,150
EeB	400	_	-	75+75	50	600
EGVI	70	_	600+80	-	-	750
SPIRE	700	-	-	50+50	100	900
TOTAL	1870	450	680	250	150	3,400

FROM AN END-USE DRIVEN APPROACH...

REFURBISHMENT				
TO TRANSFORM EXISTING	Relationship between User and Energy	CROSS-CUTTING CHALLENGES	NEUTRAL/ ENERGY	
ENERGY-EFFICIENT	Geoclustering	HORIZONTAL	POSITIVE NEW	
BUILDINGS)	Value Chain and SMEs focus	ORGANISATIONAL ASPECTS	BUILDINGS	
Sustance and Equipment for	Knowledge transfer	Systems and Equipment for energy use (horizontal)	Systems and equipment	
energy use for existing buildings	Business models, organisational and financial models (including ESCOs)	Storage of energy	for energy use for new buildings	
Envelope	-	Quality indoor environment	Systemic approach for	
(for existing buildings)		Design - Integration of new solutions	new buildings	
Solutions for Cultural Heritage		Envelope and components		
(including diagnostics)		Industrialisation and mass customization	/ Deepe efficient Institutes field 1999	
Systemic Approach for existing buildings		Automation and control	ENERGY-EFFICIENT	
	ASPECTS	Life cycle analysis (LCA)	BUILDINGS PPP	
		Energy Management Systems	ROADMAP AND LONGER	
		Labelling and standardization	TERM STRATEGY Propund by the Ad-hoc Industrial Advisory Group	
		Materials: embodied energy and multi-functiona		
		Diagnosis and predictive maintenance (continue commissioning)		
		Systems and Equipment for energy production	Roadmap	
		Diagnosis	2010-2013	
	ENERGY EFFICIENT DISTRICT/ COMMUNITIES	Systems and Equipment Storage of ene for energy production (district) thermal, electr		
		District and urban design Retrofitting (dis		
	Interaction (integration) between buildings, grid, heat network	Systems and Equipment for energy use (district)	NUL CONTRACTOR	

...TO A VALUE CHAIN AND «CHALLENGE BASED» APPROACH

NEED OF A SYSTEMIC APPROACH MULTIDISCIPLINARITY AND CROSS-SECTORIALITY

KEY RESEARCH AREAS

Technologies for acceleration of building stock renovation

Interactive and sustainable buildings embedded at district and city scale

> Ensuring energy performance during service life

PRIORITIES

Core area	Priority		Medium term (2017-18)
Design	Integrated (holistic) design		x
	Tools to disclose existing knowledge and technologies (e.g. ICT BIM)		×
Structure	Sustainability, adaptability and affordability of structures		×
Envelope (incl. finishes)	Energy and environmental performance of the full envelope	×	×
	Prefabrication		×
	Multifunctional and adaptive components, surfaces and finishes	×	×
Energy equipment	Thermal storage		×
	Distributed/decentralised energy generation on a district level		×
	Advanced heating and cooling, domestic hot water including RES & heat recovery	×	×
Construction process	ICT aided construction		×
	Improving delivered energy performance		×
	Automated Construction Tools	×	×
Performance monitoring	ICT systems interoperability	×	
	Open data standards		×
	Prediction = reality (incl. occupancy modelling)	×	x
End of Life	Innovative solutions and decision-support on renovation or new building		×

MORE THAN 100 PROJECTS SO FAR SUPPORTED BY THE EC AND INDUSTRY THROUGH PPP EeB in FP7 (2010-2013 calls)

DEVELOPMENT OF NEW TECHNOLOGIES

ICT FOR ENERGY-EFFICIENT BUILDINGS

INTEGRATION AND DEMONSTRATION OF TECHNOLOGIES FOR ENERGY EFFICIENCY

IMPACT: CONVERT IDEAS AND RESEARCH ENDEAVOURS INTO "SUSTAINABLE" APPLICATIONS

Synergies with key initiatives like Intelligent Energy, ...

>>>> E2B STRATEGY AND LONG TERM ROADMAP >>>>

Project Concepts/ opportunities ENERGY-EFFICIENT Multi-onnual roodma BUILDINGS for the contractual PPP inder Horizon 2020 Front End > Frequence 4

s (Concerto, …)

uous leakages and wledge transfer urrent products

eplication and yment throughout U and beyond

>>>> E2B STRATEGY AND LONG TERM ROADMAP >>>>

TARGETING MARKETS FROM A DIFFERENT PERSPECTIVES: GEOCLUSTERS

- Global solutions locally optimised
- Connecting global players with innovative SMEs
- Local impact exploitation of cohesion funds

PROGRAMME LOGIC IMPACT GENERATION

Courtesy: TNO

CURRENT ACHIEVEMENTS

Energy and CO_2 Savings Average reduction in energy use: 39% Annual savings in CO_2 : 4Mt

Investment €429 million invested so far

Demonstrators A total of 242 demonstrators located in 24 countries

CURRENT ACHIEVEMENTS

Areas Improved (buildings and districts)

Engagement

- Over 70,000 end-users engaged and 15,300 dwellings improved.
- 5 offices, 2 sports complexes and 3 transport hubs involved in projects.
- 22 educational institutions (1 nursery, 8 schools, 13 university buildings)
- Potentially thousands more engaged from airports etc.
- 132 SMEs engaged.

4.9 million reached through dissemination activity8 900 individuals trained

THANKS FOR YOUR ATTENTION

www.e2b-ei.eu secretariat@e2b-ei.eu

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION

HORIZ (2020) N 2020

EeB PPP Call topics for 2015

ovation

EeB - Call topics for 2015

• Total EC funding: €73 million

- NMP (64 M€)
 - 3 topics IA + 1 RIA
- Energy (9 M€)
 - **1 topic IA**
- Common deadline: originally planned 9 December 2014 delayed to early 2015
- Areas covered include: design tools for refurbishment; thermal energy storage; energy performance assessment; retrofitting of residential buildings; and design for new high energy performing buildings
- Each proposal should:
 - Include **outlined** exploitation and business plan;
 - Show active seeking for funding opportunities in other programmes.

Application of the Technology Readiness Levels

Where a topic description refers to a TRL, the following definitions apply, unless otherwise specified:

- TRL 1 basic principles observed
- TRL 2 technology concept formulated
- TRL 3 experimental proof of concept
- TRL 4 technology validated in lab
- TRL 5 technology validated in relevant environment (industrial relevant environment for KETs)
- TRL 6 technology demonstrated in relevant environment (industrial for KETs)
- TRL 7 system prototype demonstration in operational environment
- TRL 8 system complete and qualified
- TRL 9 actual system proven in operational environment (competitive manufacturing for KETs)

EeB 5 – 2015 Innovative design tools for refurbishment at building and district level

Specific Challenge:

- Major innovations in the design tools, construction methods and management practices to allow integration at district level;
- A renovated building should be **part** of a **global energy system;**
- **Interoperability** tools and solutions suited to collaborative multidisciplinary refurbishing work

Scope (1):

Focus on design at building and district level including:

- Adjacent systems: district heating/cooling and decentralised thermal energy generation and other interactions with the neighbourhood, giving priority to local renewable resources.
- Holistic methods and tools;

EeB 5 – 2015 Innovative design tools for refurbishment at building and district level

TRL

5-7

Scope (2):

IA

Geo-clustered data sets

Operational info / knowledge based design -> input for management systems 70%

Expected Impact:

- More effective refurbishment at building and district level.
- Optimised design of integrated energy-efficient buildings enabling actors to take validated and quantified choices for the refurbishment at building and district level.

Significant participation of SMEs with R&D capacities is encouraged

EeB 6 – 2015 Integrated solutions of thermal energy storage for building applications

Specific Challenge:

Storage plays a pivotal role in synchronising energy demand and supply, both on a short and long term (seasonal) basis.
Transformation of our existing building stock towards very low energy buildings and nearly zero energy and Plus-energy buildings requires effective integration and full use of the potential yield of renewable energy.

Scope (1):

- Advanced solutions to reduce: thermal losses, pressure drops, improve heat exchange in and between storage material and heat carrier.
- High energy density storage materials: long term multi-cyclic stability at tuneable temperature levels - regeneration t^o in the range below 100°C - energy storage capacity at least 6 times the water one;

EeB 6 – 2015 Integrated solutions of thermal energy storage for building applications

Scope (2):

- Storage reactor components (heat exchanger);
- Advanced energy management, safe and environmentally friendly.

Expected Impact:

• Demonstrate solutions that have a stable long term performance in multi-cyclic seasonal use of at least 20 years.

100%

- Validate in the case of pumpable energy storage materials, an energy density comparable to the best solid-gas systems.
- Deliver compact system < 2,5 m³ per dwelling.
- Reduction of the net energy consumption of a building by at least 15% and have a return-on-investment period below 10 years.

EeB 7 – 2015 New tools and methodologies to reduce the gap between predicted and actual energy performances at the level of buildings and blocks of buildings

Specific Challenge:

- **Monitor** the **real energy use** in energy-efficient buildings and for a set of interacting buildings.
- Capture the real complexities of the energy performance of the actual buildings and districts.
- Effective methodologies to describe **user behaviour**.

Scope (1):

- Develop **methodologies and tools** to monitor and assess actual building energy performance considering user behaviour, complex energy systems performance and weather forecast, etc.
- **Predict accurately** building energy loads and consumption along the whole lifecycle ;

EeB 7 - 2015New tools and methodologies to
reduce the gap between predicted and actual
energy performances at the level of buildings and
blocks of buildingsIA

70%

Scope (2):

- A **holistic "open" approach** to building control and monitoring systems is required;
- Support decision making during the whole life of the building;
- **Real time** optimisation of energy demand and supply using intelligent energy management systems at the level of a block of buildings.

Expected Impact (1):

 Significant reduction in the difference between real and predicted energy behaviour in a building or a block of buildings after demonstration of the viability of the new tools and methods for measuring and analysing real building energy performance. EeB 7 – 2015 New tools and methodologies to reduce the gap between predicted and actual energy performances at the level of buildings and blocks of buildings

Expected Impact (2):

- The **gap** is **narrowed down** to a value consistent with energy performance contracts.
- Provide solutions with a **high replication potential**.

Significant participation of SMEs with R&D capacities is encouraged.

EeB 8 – 2015 Integrated approach to retrofitting of residential buildings

Specific Challenge:

• Focus on **deep rehabilitation of residential buildings** (including buildings of historic value);

• Innovative, efficient and cost-effective retrofitting solutions to meet the planned **net-zero energy standards**.

• **Breakthrough solutions :** affordable along the whole life cycle, reducing maintenance with higher performance reliability and reduced energy use.

Scope (1):

• **Systemic approaches** integrating the **most promising** costeffective technologies and materials to **reduce building heat needs**;

• The **district scale**, as well as the **interactions** between the buildings and the thermal and electrical energy networks should be taken into account;

EeB 8 – 2015 Integrated approach to retrofitting of residential buildings

Scope (2):

- Innovative solutions with a high degree of **flexibility** to the **grid**;
- Integration of compact thermal energy storage unit;
- Full **potential of ICT:** control systems, modelling, simulation, virtual reality, etc.;
- Large scale demonstration high replicability financial model;
- Standardization work;
- Participation of building owners;
- Low intrusive techniques;
- Speeding up the construction process at high quality standards

EeB 8 – 2015 Integrated approach to retrofitting of residential buildings

Expected Impact :

- **Real case demonstration** of innovative retrofitting solutions close to **net zero energy** standards.
- Reduction of at least 60% in energy consumption compared to the values before renovation while ensuring affordability.
- Demonstrate a **high replicability potential**.
- Return on investment should be below 7 years in the case of deep retrofitting.
- Advent of a new generation of skilled workers and SME contractors in the construction sector aware of the need of a systemic approach towards energy efficiency should be promoted through the proposed activities.

Significant participation of SMEs with R&D capacities is encouraged.

EE 2 -2015 Buildings design for new highly energy performing buildings

Specific Challenge:

- All buildings must achieve "nearly zero energy" by end of 2020 (end of 2018 for public buildings)
- Encourage "plus energy buildings" to reduce overall energy use and increase share of renewables
- Costs of such buildings are a barrier to investment
- Industry needs to deliver affordable solutions to meet these targets

EE 2 -2015 Buildings design for new highly EE 2 -2015 energy performing buildings

What we mean by:

•Nearly Zero Energy Buildings (nZEB)

The very low amount of energy required should be covered to a "very significant extent" by energy from renewable sources, produced either on-site or nearby

Plus Energy Buildings

Buildings that produce more energy than they consume

EE 2 -2015 Buildings design for new highly EE 2 -2015 energy performing buildings

Scope:

- Demonstrate reduced costs with nZEB performance, whilst accelerating market uptake
- Passive or active solutions
- Automated or cost-effective maintenance of installations
- Assess and minimize gap between predicted and actual energy performance
- Address the challenge to move to a large scale e.g. net-zero energy neighbourhoods
- Focus on on-site and nearby RES designs and energy efficiency methods that go beyond nZEB standards

EE 2 -2015 Buildings design for new highly EE 2 -2015 energy performing buildings

Expected Impact:

- Increased share of nZEBs, aiming for 100% by end of 2020.
- Cost reductions at least 15% compared with current situation
- Additional benefits in terms of energy reduction
- Demonstration for net-zero energy districts that use onsite or nearby RES

THANKS FOR YOUR ATTENTION

www.e2b-ei.eu secretariat@e2b-ei.eu